劇情簡介
脑力舒适在其中占了上风,然而却付出了沉重的代价。最糟糕的是我们意识不到这个过程的危险性,还冒险使用那些距有效适用领域甚远的类别定义所检验的方法。因此,明确这种机制、阐明它所依据的假设以及找出概念的局限至关重要。那么,我们所赖以划分类别的智力进程是什么呢?它具有怎样的随机性?即使我们只能用若干事实来回答问题,关注这一活动的细节也并非徒劳无益。我们首先注意到“分类”一词既指划分类别的过程本身,也指这个过程所得的结果。而且在这种分类中必须区分下面两个词:第一个词用于给各种不同的类别下定义,即分类学;第二个词用于将一个物体归入一种类别,即个体识别法。曾经有人专门研究过这些活动,尤其是有关生物分类的活动,我们在这里将仅仅举出以下这个特例。性状的随机选择一个对象,我研究它的整体性(借用我们的比利时朋友的准确说辞,研究它的“完整性”)时,它是无法被分类的。它在我面前,它不可征服,它不属于我的类别,它完全避开了我。为了驯服它,将其编入我所定义或将要定义的井然有序的类别中,我必须忘记它,用一个我事先选定的特性的集合来代替它。我得忘记我的忠实伙伴瓦利,而仅限于观察它的皮毛颜色、体重、口鼻的形状、吠叫或奔跑的方式。通过这些特性,我可以确定这是一种动物,一种狗,一种德国牧羊犬,就这样把它归入一个类别。为了进行这种分类,我将依据自己的目的来选择这个或那个性状集合。因此,我无法真正地给物体分类,而只能根据对这些物体的测量来将一些特性集合分类。长久以来,我们所考虑的属性就是那些直接被我们的感官所感知的特性,如颜色、形状、重量、行为……因此,我们的已知数据只限于对象的表型。所以我们能够在生物集合中分离出那些体内有骨骼的生物,列为“脊椎动物”门;脊椎动物中,哺乳幼兽的动物属“哺乳动物”纲;哺乳动物中,大脑特别发达的动物为“灵长动物”目;最后,灵长类动物中与我们可以繁殖出后代的个体总和就是“人”种。每个分类阶段所使用的标准都与一种或几种容易觉察到的特性相关。此外,我们知道物种常常汇聚了数目可观的个体,分类学家们常常冲动地不遵循物种的等级,以亚种、“宗”和“(比宗更小的)群”(注意,此处的“亚”不含有任何价值判断,而只意味着延伸到下一个层次的分类)来分析这些物种。再者,他们所用的是一些诸如肤色、身高、头发的组织结构等表型标准,就是这些标准确定了3个传统“人种”:黄种人、白种人和黑种人。然而生物学的进步表明了有些非直观的性状可能在描述一个生物并把它归类方面具有更大的重要性。兰德斯坦纳兰德斯坦纳(Landsteiner,1868~1943),奥地利裔美籍生物学家。1930年诺贝尔医学及生理学奖获得者。——译注在1901年发现了第一个血型系统,即ABO血型系统,这个发现把所有人类分属于4个类别(还可以再细分,但是我们在此坚持这一精确程度):A、B、AB和O。这些截然不同的类别,可以使我们毫不含糊地完成分类。科学家们又逐渐地发现许多其他多种多样的系统,如免疫球蛋白(即Gm系统)或组织亲和性(即人体白细胞抗原系统)系统。我们对这些特性的认识已经达到了非常精确的程度,所以即使各个系统的多种形态之间可能存在组合的数量很多,我们也能根据这些特性完全识别其中的每个个体。另外,这些特性与个体自身起始于孕育初期的经历互不相关。个体自父母亲那里接收到基因,并且受这些基因支配,个体的这种特性终其一生保持不变。所用的数据不再与那些或多或少受环境的影响和支配的表型有关,而是与处于绝对稳定状态的基因型相关。这种稳定性,这种与个体接收到的生物基因型之间的直接联系促使我们优先考虑基因型的特性来创建分类学,并把所研究的对象分成各种不同的类别。可惜的是,我们的可用数据常常只有那些直观的表型特性。我们必须确定表型与基因型之间具有毫不含糊的一致性,才能实现从一方过渡到另一方,可是这种情形很少见。即使在特别简单的ABO血型系统中,这种一致性:基因型(AA)(AO)(BB)(BO) (AB)(OO)表型[A][A][B][B][AB][O]也不可能通过表型来了解基因型,一个个体[A]既可以是(AO)也可能是(AA)。对与量性性状而言,困难就更大了,因为我们不了解基因如何影响表面性状的生物机制,只能够建立一些数学模式。因而,人体的肤色被遗传,“正如”色素沉着度受四五对加性基因的支配一样。事实上,与此相关的决定论极可能更复杂得多,并与数目更多得多的基因有关,但是迄今为止,我们对此尚一无所知。这些模式补足了我们的无知,强调了某些如“遗传性”等概念的有效操作性,从而建立了表型和基因型的总体联系。因此,特性是分类学和个体识别法的根基,科学家们不再进行直接测量,而是通过概率的分布来了解这些特性。另一方面,当研究对象不是一些个体,而是一些个体集合、群体时,我们有必要借助概率。